Getting started
The RCall package is loaded via
julia> using RCallThis will initialize the R process in the background.
Several Ways to use RCall
RCall provides multiple ways to allow R interacting with Julia.
- R REPL mode
@rputand@rgetmacrosR""string macro- RCall API:
reval,rcall,rcopyandrobjectetc. @rlibraryand@rimportmacros
R REPL mode
The R REPL mode allows real time switching between the Julia prompt and R prompt. Press $ to activate the R REPL mode and the R prompt will be shown. (Press backspace to leave R REPL mode in case you did not know.)
julia> foo = 1
1
R> x <- $foo
R> x
[1] 1The R REPL mode supports variable substitution of Julia objects via the $ symbol. It is also possible to pass Julia expressions in the REPL mode.
R> x = $(rand(10))
R> sum(x)
[1] 5.097083@rput and @rget macros
These macros transfer variables between R and Julia environments. The copied variable will have the same name as the original.
julia> z = 1
1
julia> @rput z
1
R> z
[1] 1
R> r = 2
julia> @rget r
2.0
julia> r
2.0It is also possible to put and get multiple variables in one line.
julia> foo = 2
2
julia> bar = 4
4
julia> @rput foo bar
4
R> foo + bar
[1] 6@R_str string macro
Another way to use RCall is the R"" string macro, it is especially useful in script files.
julia> R"rnorm(10)"RObject{RealSxp} [1] 0.99594944 0.45600730 0.01252619 -0.71273370 -0.61277879 -0.25059001 [7] 0.04989719 -1.08479437 -1.15882403 -0.87206339
This evaluates the expression inside the string in R, and returns the result as an RObject, which is a Julia wrapper type around an R object.
The R"" string macro supports variable substitution of Julia objects via the $ symbol, whenever it is not valid R syntax (i.e. when not directly following a symbol or completed expression such as aa$bb):
julia> x = randn(10)10-element Vector{Float64}: 0.09624642556418413 0.34816638966457825 -0.17718143457758492 -0.19481870409746335 0.9029301759509633 0.18440860903004028 0.18996145869172396 -1.778584583011317 0.7825396714446712 0.655859368490925julia> R"t.test($x)"RObject{VecSxp} One Sample t-test data: `#JL`$x t = 0.42043, df = 9, p-value = 0.684 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.4422358 0.6441413 sample estimates: mean of x 0.1009527
It is also possible to pass Julia expressions which are evaluated before being passed to R: these should be included in parentheses
julia> R"optim(0, $(x -> x-cos(x)), method='BFGS')"RObject{VecSxp} $par [1] -1.56343 $value [1] -1.570796 $counts function gradient 14 13 $convergence [1] 0 $message NULL
A large chunk of code could be quoted between triple string quotations
julia> y = 11julia> R""" f <- function(x, y) x + y ret <- f(1, $y) """RObject{RealSxp} [1] 2
RCall API
The reval function evaluates any given input string as R code in the R environment. The returned result is an RObject object.
julia> jmtcars = reval("mtcars");julia> names(jmtcars)11-element Vector{Symbol}: :mpg :cyl :disp :hp :drat :wt :qsec :vs :am :gear :carbjulia> jmtcars[:mpg]Ptr{RealSxp}(0x0000000014050d60)julia> typeof(jmtcars)RObject{VecSxp}
The rcall function is used to construct function calls.
julia> rcall(:dim, jmtcars)RObject{IntSxp} [1] 32 11
The arguments will be implicitly converted to RObject upon evaluation.
julia> rcall(:sum, Float64[1.0, 4.0, 6.0])RObject{RealSxp} [1] 11
The rcopy function converts RObjects to Julia objects. It uses a variety of heuristics to pick the most appropriate Julia type:
julia> rcopy(R"c(1)")1.0julia> rcopy(R"c(1, 2)")2-element Vector{Float64}: 1.0 2.0julia> rcopy(R"list(1, 'zz')")2-element Vector{Any}: 1.0 "zz"julia> rcopy(R"list(a = 1, b= 'zz')")OrderedCollections.OrderedDict{Symbol, Any} with 2 entries: :a => 1.0 :b => "zz"
It is possible to force a specific conversion by passing the output type as the first argument:
julia> rcopy(Array{Int}, R"c(1, 2)")2-element Vector{Int64}: 1 2
Converter could also be used specifically to yield the desired type.
julia> convert(Array{Float64}, R"c(1, 2)")2-element Vector{Float64}: 1.0 2.0
The robject function converts any julia object to an RObject.
julia> robject(1)RObject{IntSxp} [1] 1julia> robject(Dict(:a => 1, :b = 2))ERROR: syntax: invalid keyword argument name ":b" around REPL[2]:1
@rlibrary and @rimport macros
This macro loads all exported functions/objects of an R package to the current module.
julia> @rlibrary bootjulia> city = rcopy(R"boot::city") # get some data10×2 DataFrame Row │ u x │ Float64 Float64 ─────┼────────────────── 1 │ 138.0 143.0 2 │ 93.0 104.0 3 │ 61.0 69.0 4 │ 179.0 260.0 5 │ 48.0 75.0 6 │ 37.0 63.0 7 │ 29.0 50.0 8 │ 23.0 48.0 9 │ 30.0 111.0 10 │ 2.0 50.0julia> ratio(d, w) = sum(d[!, :x] .* w)/sum(d[!, :u] .* w)ratio (generic function with 1 method)julia> b = boot(city, ratio, R = 100, stype = "w");julia> rcall(:summary, b[:t])RObject{StrSxp} V1 Min. :1.183 1st Qu.:1.402 Median :1.505 Mean :1.579 3rd Qu.:1.660 Max. :3.295
Of course, it is highly inefficient, because the data are copying multiple times between R and Julia. The R"" string macro is more recommended for efficiency.
Some R functions may have keyword arguments which contain dots. RCall provides a string macro to escape those keywords, e.g,
julia> @rimport base as rbasejulia> rbase.sum([1, 2, 3], var"rm.na" = true)RObject{IntSxp} [1] 7