Getting started
The RCall package is loaded via
julia> using RCall
This will initialize the R process in the background.
Several Ways to use RCall
RCall provides multiple ways to allow R interacting with Julia.
- R REPL mode
@rput
and@rget
macrosR""
string macro- RCall API:
reval
,rcall
,rcopy
androbject
etc. @rlibrary
and@rimport
macros
R REPL mode
The R REPL mode allows real time switching between the Julia prompt and R prompt. Press $
to activate the R REPL mode and the R prompt will be shown. (Press backspace
to leave R REPL mode in case you did not know.)
julia> foo = 1
1
R> x <- $foo
R> x
[1] 1
The R REPL mode supports variable substitution of Julia objects via the $
symbol. It is also possible to pass Julia expressions in the REPL mode.
R> x = $(rand(10))
R> sum(x)
[1] 5.097083
@rput and @rget macros
These macros transfer variables between R and Julia environments. The copied variable will have the same name as the original.
julia> z = 1
1
julia> @rput z
1
R> z
[1] 1
R> r = 2
julia> @rget r
2.0
julia> r
2.0
It is also possible to put and get multiple variables in one line.
julia> foo = 2
2
julia> bar = 4
4
julia> @rput foo bar
4
R> foo + bar
[1] 6
@R_str string macro
Another way to use RCall is the R""
string macro, it is especially useful in script files.
julia> R"rnorm(10)"
RObject{RealSxp} [1] 0.73844692 0.49991636 0.48866181 -0.66194511 0.55402013 -1.25629855 [7] 2.14853954 -0.73170566 -0.09950143 0.67223246
This evaluates the expression inside the string in R, and returns the result as an RObject
, which is a Julia wrapper type around an R object.
The R""
string macro supports variable substitution of Julia objects via the $
symbol, whenever it is not valid R syntax (i.e. when not directly following a symbol or completed expression such as aa$bb
):
julia> x = randn(10)
10-element Vector{Float64}: -1.1051005478030076 0.9268172588156641 0.15091347296011737 1.2137240327990235 -0.17021345031444762 -0.25866016794554947 -0.14810634014555002 2.3610534120105218 -2.0147868246523273 -0.39966552507678343
julia> R"t.test($x)"
RObject{VecSxp} One Sample t-test data: `#JL`$x t = 0.14378, df = 9, p-value = 0.8888 alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.8191264 0.9303215 sample estimates: mean of x 0.05559753
It is also possible to pass Julia expressions which are evaluated before being passed to R: these should be included in parentheses
julia> R"optim(0, $(x -> x-cos(x)), method='BFGS')"
RObject{VecSxp} $par [1] -1.56343 $value [1] -1.570796 $counts function gradient 14 13 $convergence [1] 0 $message NULL
A large chunk of code could be quoted between triple string quotations
julia> y = 1
1
julia> R""" f <- function(x, y) x + y ret <- f(1, $y) """
RObject{RealSxp} [1] 2
RCall API
The reval
function evaluates any given input string as R code in the R environment. The returned result is an RObject
object.
julia> jmtcars = reval("mtcars");
julia> names(jmtcars)
11-element Vector{Symbol}: :mpg :cyl :disp :hp :drat :wt :qsec :vs :am :gear :carb
julia> jmtcars[:mpg]
Ptr{RealSxp} @0x0000000007487f80
julia> typeof(jmtcars)
RObject{VecSxp}
The rcall
function is used to construct function calls.
julia> rcall(:dim, jmtcars)
RObject{IntSxp} [1] 32 11
The arguments will be implicitly converted to RObject
upon evaluation.
julia> rcall(:sum, Float64[1.0, 4.0, 6.0])
RObject{RealSxp} [1] 11
The rcopy
function converts RObject
s to Julia objects. It uses a variety of heuristics to pick the most appropriate Julia type:
julia> rcopy(R"c(1)")
1.0
julia> rcopy(R"c(1, 2)")
2-element Vector{Float64}: 1.0 2.0
julia> rcopy(R"list(1, 'zz')")
2-element Vector{Any}: 1.0 "zz"
julia> rcopy(R"list(a = 1, b= 'zz')")
OrderedCollections.OrderedDict{Symbol, Any} with 2 entries: :a => 1.0 :b => "zz"
It is possible to force a specific conversion by passing the output type as the first argument:
julia> rcopy(Array{Int}, R"c(1, 2)")
2-element Vector{Int64}: 1 2
Converter could also be used specifically to yield the desired type.
julia> convert(Array{Float64}, R"c(1, 2)")
2-element Vector{Float64}: 1.0 2.0
The robject
function converts any julia object to an RObject.
julia> robject(1)
RObject{IntSxp} [1] 1
julia> robject(Dict(:a => 1, :b = 2))
ERROR: syntax: invalid keyword argument name ":b" around REPL[2]:1
@rlibrary
and @rimport
macros
This macro loads all exported functions/objects of an R package to the current module.
julia> @rlibrary boot
julia> city = rcopy(R"boot::city") # get some data
10×2 DataFrame Row │ u x │ Float64 Float64 ─────┼────────────────── 1 │ 138.0 143.0 2 │ 93.0 104.0 3 │ 61.0 69.0 4 │ 179.0 260.0 5 │ 48.0 75.0 6 │ 37.0 63.0 7 │ 29.0 50.0 8 │ 23.0 48.0 9 │ 30.0 111.0 10 │ 2.0 50.0
julia> ratio(d, w) = sum(d[!, :x] .* w)/sum(d[!, :u] .* w)
ratio (generic function with 1 method)
julia> b = boot(city, ratio, R = 100, stype = "w");
julia> rcall(:summary, b[:t])
RObject{StrSxp} V1 Min. :1.239 1st Qu.:1.400 Median :1.508 Mean :1.580 3rd Qu.:1.702 Max. :2.678
Of course, it is highly inefficient, because the data are copying multiple times between R and Julia. The R""
string macro is more recommended for efficiency.
Some R functions may have keyword arguments which contain dots. RCall provides a string macro to escape those keywords, e.g,
julia> @rimport base as rbase
julia> rbase.sum([1, 2, 3], var"rm.na" = true)
RObject{IntSxp} [1] 7