Getting started
The RCall package is loaded via
julia> using RCall
This will initialize the R process in the background.
Several Ways to use RCall
RCall provides multiple ways to allow R interacting with Julia.
- R REPL mode
@rput
and@rget
macrosR""
string macro- RCall API:
reval
,rcall
,rcopy
androbject
etc. @rlibrary
and@rimport
macros
R REPL mode
The R REPL mode allows real time switching between the Julia prompt and R prompt. Press $
to activate the R REPL mode and the R prompt will be shown. (Press backspace
to leave R REPL mode in case you did not know.)
julia> foo = 1
1
R> x <- $foo
R> x
[1] 1
The R REPL mode supports variable substitution of Julia objects via the $
symbol. It is also possible to pass Julia expressions in the REPL mode.
R> x = $(rand(10))
R> sum(x)
[1] 5.097083
@rput and @rget macros
These macros transfer variables between R and Julia environments. The copied variable will have the same name as the original.
julia> z = 1
1
julia> @rput z
1
R> z
[1] 1
R> r = 2
julia> @rget r
2.0
julia> r
2.0
It is also possible to put and get multiple variables in one line.
julia> foo = 2
2
julia> bar = 4
4
julia> @rput foo bar
4
R> foo + bar
[1] 6
@R_str string macro
Another way to use RCall is the R""
string macro, it is especially useful in script files.
julia> R"rnorm(10)"
RObject{RealSxp}
[1] 0.9583381 -0.2134018 0.1058059 -0.4984809 -0.1634174 -0.4119473
[7] -0.8863998 0.7666781 -0.2696060 -1.2110568
This evaluates the expression inside the string in R, and returns the result as an RObject
, which is a Julia wrapper type around an R object.
The R""
string macro supports variable substitution of Julia objects via the $
symbol, whenever it is not valid R syntax (i.e. when not directly following a symbol or completed expression such as aa$bb
):
julia> x = randn(10)
10-element Vector{Float64}:
-0.7942963270957478
-0.7159475306364221
-0.4139973872505756
-0.9438455908495627
1.5334303644094094
0.6654199495816443
-0.3249515499308118
1.1780374918902508
-0.7399435456593367
0.10774327304383748
julia> R"t.test($x)"
RObject{VecSxp}
One Sample t-test
data: `#JL`$x
t = -0.16039, df = 9, p-value = 0.8761
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.6771748 0.5875046
sample estimates:
mean of x
-0.04483509
It is also possible to pass Julia expressions which are evaluated before being passed to R: these should be included in parentheses
julia> R"optim(0, $(x -> x-cos(x)), method='BFGS')"
RObject{VecSxp}
$par
[1] -1.56343
$value
[1] -1.570796
$counts
function gradient
14 13
$convergence
[1] 0
$message
NULL
A large chunk of code could be quoted between triple string quotations
julia> y = 1
1
julia> R"""
f <- function(x, y) x + y
ret <- f(1, $y)
"""
RObject{RealSxp}
[1] 2
RCall API
The reval
function evaluates any given input string as R code in the R environment. The returned result is an RObject
object.
julia> jmtcars = reval("mtcars");
julia> names(jmtcars)
11-element Vector{Symbol}:
:mpg
:cyl
:disp
:hp
:drat
:wt
:qsec
:vs
:am
:gear
:carb
julia> jmtcars[:mpg]
RObject{RealSxp}
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
[31] 15.0 21.4
julia> typeof(jmtcars)
RObject{VecSxp}
The rcall
function is used to construct function calls.
julia> rcall(:dim, jmtcars)
RObject{IntSxp}
[1] 32 11
The arguments will be implicitly converted to RObject
upon evaluation.
julia> rcall(:sum, Float64[1.0, 4.0, 6.0])
RObject{RealSxp}
[1] 11
The rcopy
function converts RObject
s to Julia objects. It uses a variety of heuristics to pick the most appropriate Julia type:
julia> rcopy(R"c(1)")
1.0
julia> rcopy(R"c(1, 2)")
2-element Vector{Float64}:
1.0
2.0
julia> rcopy(R"list(1, 'zz')")
2-element Vector{Any}:
1.0
"zz"
julia> rcopy(R"list(a = 1, b= 'zz')")
OrderedCollections.OrderedDict{Symbol, Any} with 2 entries:
:a => 1.0
:b => "zz"
It is possible to force a specific conversion by passing the output type as the first argument:
julia> rcopy(Array{Int}, R"c(1, 2)")
2-element Vector{Int64}:
1
2
Converter could also be used specifically to yield the desired type.
julia> convert(Array{Float64}, R"c(1, 2)")
2-element Vector{Float64}:
1.0
2.0
The robject
function converts any julia object to an RObject.
julia> robject(1)
RObject{IntSxp}
[1] 1
julia> robject(Dict(:a => 1, :b = 2))
ERROR: syntax: invalid keyword argument name ":b"
@rlibrary
and @rimport
macros
This macro loads all exported functions/objects of an R package to the current module.
julia> @rlibrary boot
julia> city = rcopy(R"boot::city") # get some data
10×2 DataFrame
Row │ u x
│ Float64 Float64
─────┼──────────────────
1 │ 138.0 143.0
2 │ 93.0 104.0
3 │ 61.0 69.0
4 │ 179.0 260.0
5 │ 48.0 75.0
6 │ 37.0 63.0
7 │ 29.0 50.0
8 │ 23.0 48.0
9 │ 30.0 111.0
10 │ 2.0 50.0
julia> ratio(d, w) = sum(d[!, :x] .* w)/sum(d[!, :u] .* w)
ratio (generic function with 1 method)
julia> b = boot(city, ratio, R = 100, stype = "w");
julia> rcall(:summary, b[:t])
RObject{StrSxp}
V1
Min. :1.191
1st Qu.:1.390
Median :1.523
Mean :1.577
3rd Qu.:1.694
Max. :2.625
Of course, it is highly inefficient, because the data are copying multiple times between R and Julia. The R""
string macro is more recommended for efficiency.
Some R functions may have keyword arguments which contain dots. RCall provides a string macro to escape those keywords, e.g,
julia> @rimport base as rbase
julia> rbase.sum([1, 2, 3], var"rm.na" = true)
RObject{IntSxp}
[1] 7