Getting started
The RCall package is loaded via
julia> using RCall
This will initialize the R process in the background.
Several Ways to use RCall
RCall provides multiple ways to allow R interacting with Julia.
- R REPL mode
@rput
and@rget
macrosR""
string macro- RCall API:
reval
,rcall
,rcopy
androbject
etc. @rlibrary
and@rimport
macros
R REPL mode
The R REPL mode allows real time switching between the Julia prompt and R prompt. Press $
to activate the R REPL mode and the R prompt will be shown. (Press backspace
to leave R REPL mode in case you did not know.)
julia> foo = 1
1
R> x <- $foo
R> x
[1] 1
The R REPL mode supports variable substitution of Julia objects via the $
symbol. It is also possible to pass Julia expressions in the REPL mode.
R> x = $(rand(10))
R> sum(x)
[1] 5.097083
@rput and @rget macros
These macros transfer variables between R and Julia environments. The copied variable will have the same name as the original.
julia> z = 1
1
julia> @rput z
1
R> z
[1] 1
R> r = 2
julia> @rget r
2.0
julia> r
2.0
It is also possible to put and get multiple variables in one line.
julia> foo = 2
2
julia> bar = 4
4
julia> @rput foo bar
4
R> foo + bar
[1] 6
@R_str string macro
Another way to use RCall is the R""
string macro, it is especially useful in script files.
julia> R"rnorm(10)"
RObject{RealSxp}
[1] -0.72687855 -0.33970450 -0.73194258 1.03683473 -0.36328502 -0.72049376
[7] -0.62619973 0.09185129 1.16216142 2.17293414
This evaluates the expression inside the string in R, and returns the result as an RObject
, which is a Julia wrapper type around an R object.
The R""
string macro supports variable substitution of Julia objects via the $
symbol, whenever it is not valid R syntax (i.e. when not directly following a symbol or completed expression such as aa$bb
):
julia> x = randn(10)
10-element Array{Float64,1}:
0.4816123619498722
0.3264937624075163
1.0541193260848456
-1.302322244295568
-0.6532385852868288
-1.9367446336772407
0.8170826524159507
0.8177315590330477
-0.42775328167862064
1.396114201915309
julia> R"t.test($x)"
RObject{VecSxp}
One Sample t-test
data: `#JL`$x
t = 0.16575, df = 9, p-value = 0.872
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.7248370 0.8394561
sample estimates:
mean of x
0.05730951
It is also possible to pass Julia expressions which are evaluated before being passed to R: these should be included in parentheses
julia> R"optim(0, $(x -> x-cos(x)), method='BFGS')"
RObject{VecSxp}
$par
[1] -1.56343
$value
[1] -1.570796
$counts
function gradient
14 13
$convergence
[1] 0
$message
NULL
A large chunk of code could be quoted between triple string quotations
julia> y = 1
1
julia> R"""
f <- function(x, y) x + y
ret <- f(1, $y)
"""
RObject{RealSxp}
[1] 2
RCall API
The reval
function evaluates any given input string as R code in the R environment. The returned result is an RObject
object.
julia> jmtcars = reval("mtcars");
julia> names(jmtcars)
11-element Array{Symbol,1}:
:mpg
:cyl
:disp
:hp
:drat
:wt
:qsec
:vs
:am
:gear
:carb
julia> jmtcars[:mpg]
RObject{RealSxp}
[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.7
[31] 15.0 21.4
julia> typeof(jmtcars)
RObject{VecSxp}
The rcall
function is used to construct function calls.
julia> rcall(:dim, jmtcars)
RObject{IntSxp}
[1] 32 11
The arguments will be implicitly converted to RObject
upon evaluation.
julia> rcall(:sum, Float64[1.0, 4.0, 6.0])
RObject{RealSxp}
[1] 11
The rcopy
function converts RObject
s to Julia objects. It uses a variety of heuristics to pick the most appropriate Julia type:
julia> rcopy(R"c(1)")
1.0
julia> rcopy(R"c(1, 2)")
2-element Array{Float64,1}:
1.0
2.0
julia> rcopy(R"list(1, 'zz')")
2-element Array{Any,1}:
1.0
"zz"
julia> rcopy(R"list(a = 1, b= 'zz')")
DataStructures.OrderedDict{Symbol,Any} with 2 entries:
:a => 1.0
:b => "zz"
It is possible to force a specific conversion by passing the output type as the first argument:
julia> rcopy(Array{Int}, R"c(1, 2)")
2-element Array{Int64,1}:
1
2
Converter could also be used specifically to yield the desired type.
julia> convert(Array{Float64}, R"c(1, 2)")
2-element Array{Float64,1}:
1.0
2.0
The robject
function converts any julia object to an RObject.
julia> robject(1)
RObject{IntSxp}
[1] 1
julia> robject(Dict(:a => 1, :b = 2))
ERROR: syntax: invalid keyword argument name ":b"
@rlibrary
and @rimport
macros
This micro loads all exported functions/objects of an R package to the current module.
julia> @rlibrary boot
julia> city = rcopy(R"boot::city") # get some data
10×2 DataFrames.DataFrame
│ Row │ u │ x │
├─────┼───────┼───────┤
│ 1 │ 138.0 │ 143.0 │
│ 2 │ 93.0 │ 104.0 │
│ 3 │ 61.0 │ 69.0 │
│ 4 │ 179.0 │ 260.0 │
│ 5 │ 48.0 │ 75.0 │
│ 6 │ 37.0 │ 63.0 │
│ 7 │ 29.0 │ 50.0 │
│ 8 │ 23.0 │ 48.0 │
│ 9 │ 30.0 │ 111.0 │
│ 10 │ 2.0 │ 50.0 │
julia> ratio(d, w) = sum(d[:x] .* w)/sum(d[:u] .* w)
ratio (generic function with 1 method)
julia> b = boot(city, ratio, R = 100, stype = "w");
julia> rcall(:summary, b[:t])
RObject{StrSxp}
V1
Min. :1.201
1st Qu.:1.400
Median :1.513
Mean :1.554
3rd Qu.:1.646
Max. :2.819
Of course, it is highly inefficient, because the data are copying multiple times between R and Julia. The R""
string macro is more recommended for efficiency.
Some R functions may have keyword arguments which contain dots. RCall provides a string macro to escape those keywords, e.g,
julia> @rimport base as rbase
julia> rbase.sum([1, 2, 3], var"rm.na" = true)
RObject{IntSxp}
[1] 7